Robust estimation for discrete‐time state space models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Likelihood Estimation in State Space Models

Motivated by studying asymptotic properties of the maximum likelihood estimator (MLE) in stochastic volatility (SV) models, in this paper we investigate likelihood estimation in state space models. We first prove, under some regularity conditions, there is a consistent sequence of roots of the likelihood equation that is asymptotically normal with the inverse of the Fisher information as its va...

متن کامل

On Particle Methods for Parameter Estimation in State-Space Models

Nonlinear non-Gaussian state-space models are ubiquitous in statistics, econometrics, information engineering and signal processing. Particle methods, also known as Sequential Monte Carlo (SMC) methods, provide reliable numerical approximations to the associated state inference problems. However, in most applications, the state-space model of interest also depends on unknown static parameters t...

متن کامل

A framework for state-space estimation with uncertain models

This paper develops a framework for state-space estimation when the parameters of the underlying linear model are subject to uncertainties. Compared with existing robust filters, the proposed filters perform regularization rather than de-regularization. It is shown that, under certain stabilizability and detectability conditions, the steady-state filters are stable and that, for quadratically-s...

متن کامل

On stable simultaneous input and state estimation for discretetime linear systems

This work is devoted to solving simultaneous input and state estimation (SISE) problem for discrete-time linear systems. Our aim is to develop stable SISE algorithms. By applying the minimum variance unbiased estimation technique, we derive two SISE algorithms in the presence or absence of direct feedthrough, respectively. Riccati-like equations are formulated and presented to analyze the stabi...

متن کامل

Robust Estimation in Linear Regression with Molticollinearity and Sparse Models

‎One of the factors affecting the statistical analysis of the data is the presence of outliers‎. ‎The methods which are not affected by the outliers are called robust methods‎. ‎Robust regression methods are robust estimation methods of regression model parameters in the presence of outliers‎. ‎Besides outliers‎, ‎the linear dependency of regressor variables‎, ‎which is called multicollinearity...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Scandinavian Journal of Statistics

سال: 2020

ISSN: 0303-6898,1467-9469

DOI: 10.1111/sjos.12482